Question: How do we find the slope of the graph $y=f(x)$ at a point $\left(x_{0}, f\left(x_{0}\right)\right)$ on the graph?

Step 1. Find an approximation to the slope.
Problem: we need two points to calculate a slope but we have only one point: $\left(x_{0}, f\left(x_{0}\right)\right)$.

Solution: choose another point on the graph, say ($x_{1}, f\left(x_{1}\right)$), and calculate the slope of the (secant) line that connects these two points:

$$
m_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

The slope m_{1} is an approximation of the (unknown) slope that we seek.

Step 2. Find a (repeatable) way to improve the approximation.
Intuition: If we choose a point x_{2} that is closer to x_{0} than x_{1}, and find the slope

$$
m_{2}=\frac{f\left(x_{2}\right)-f\left(x_{0}\right)}{x_{2}-x_{0}}
$$

of the line connecting $\left(x_{0}, f\left(x_{0}\right)\right)$ to $\left(x_{2}, f\left(x_{2}\right)\right)$, then m_{2} will be a better approximation to the slope $\boldsymbol{a t}\left(x_{0}, f\left(x_{0}\right)\right)$ than m_{1}.

Step 3 and beyond: Repeat step 2 and take a limit.
Intuition: If we continue to choose points on the graph that are closer and closer to $\left(x_{0}, f\left(x_{0}\right)\right)$ and compute the slopes of the secant lines connecting these points to $\left(x_{0}, f\left(x_{0}\right)\right)$, then these slopes should approach the slope $\boldsymbol{a t}\left(x_{0}, f\left(x_{0}\right)\right)$, if it exists.

Definition: The slope of the graph $y=f\left(x_{0}\right)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$ is given by

$$
m_{0}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

if the limit exists. If the limit does not exist, then the graph does not have a slope at that point.

Definition: If the graph $y=f(x)$ has a slope m_{0} at $\left(x_{0}, f\left(x_{0}\right)\right)$, then the straight line that passes through $\left(x_{0}, f\left(x_{0}\right)\right)$ with slope m_{0} is called the tangent line to the graph at that point.

Example 1: Find the slope of the graph $y=x^{2}$ at the point $(1,1)$, and find the equation of the tangent line to $y=x^{2}$ at $(1,1)$.
Example 1: Find the slope of the graph $y=x^{2}$ at the point $(1,1)$, and find the equation of the tangent line to $y=x^{2}$ at $(1,1)$.

$$
m=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-I}=\lim _{x \rightarrow 1} x+1=2 .
$$

The tangent line we seek passes through the point $(1,1)$ with slope $m=2 \ldots$ To find its equation, use the point-slope formula:

$$
y-y_{0}=m_{0}\left(x-x_{0}\right) \Longrightarrow y-1=2(x-1) \Longrightarrow y=2 x-1 .
$$

Terminology and Notation:

The slope of $y=f(x)$ at $\left(x_{0}, f\left(x_{0}\right)\right)$ is called the derivative of $y=f(x)$ at x_{0}, and denoted by $f^{\prime}\left(x_{0}\right)$ or $y^{\prime}\left(x_{0}\right)$. I.e.,

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}},
$$

if the limit exists.
$\left(^{*}\right)$ The equation of the tangent line to $y=f(x)$ at $\left(x_{0}, f\left(x_{0}\right)\right)$ can be written

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad \text { or } \quad y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) .
$$

$\left.{ }^{*}\right)$ If we write $x=x_{0}+h$, then $x-x_{0}=h$.
(*) In this case, $x \rightarrow x_{0}$ is the same as $h \rightarrow 0$.
(*) We can (re)write the definition of the derivative as

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

Example 1, revisited: The derivative of $y=x^{2}$ at $x=1$ is

$$
\begin{aligned}
y^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not \perp+2 h+h^{2}-\not \perp}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(2+h)}{\not h}=\lim _{h \rightarrow 0} 2+h=2 .
\end{aligned}
$$

Example 2: Find the derivative of $y=x^{2}$ at the points $x=2$ and $x=-1$.

$$
\begin{aligned}
y^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{A+4 h+h^{2}-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(4+h)}{\not h}=\lim _{h \rightarrow 0} 4+h=4 .
\end{aligned}
$$

and

$$
\begin{aligned}
y^{\prime}(-1) & =\lim _{h \rightarrow 0} \frac{(-1+h)^{2}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not \perp-2 h+h^{2}-\not 又}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(-2+h)}{\not h}=\lim _{h \rightarrow 0}-2+h=-2 .
\end{aligned}
$$

Definition: The derivative of the function $y=f(x)$ is the function $f^{\prime}(x)$ defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

at every point x where the limit exists.
Terminology: If $f^{\prime}(x)$ is defined at a point x_{0}, then the function $f(x)$ is said to be differentiable at x_{0}. If $f(x)$ is differentiable at every point x in some interval $I=(a, b)$, then $f(x)$ is differentiable in I.
Example 3: Find the derivative of $f(x)=x^{2}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{\mathscr{L}}+2 x h+h^{2}-x^{\mathscr{L}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(2 x+h)}{\not h}=\lim _{h \rightarrow 0} 2 x+h=2 x .
\end{aligned}
$$

This limit exists for all x, so $f(x)=x^{2}$ is differentiable on the entire real line.

Example 4. Find the derivative of the function $l(x)=a x+b$.

$$
\begin{aligned}
l^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{a(x+h)+b-(a x+b)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a x+a h+\not b-a x-\not x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a h}{h h}=\lim _{h \rightarrow 0} a=a
\end{aligned}
$$

Observation: The graph $y=l(x)$ is a straight line with slope a, so the fact that $l^{\prime}(x)=a$ shows that the derivative, as defined, extends the concept of slope from straight lines to more general curves.

Comment: We don't have to use h to denote the change in x. Another (perhaps better) symbol for the change in x is Δx, pronounced delta x.

Example 5: Find the derivative of $g(x)=x^{1 / 2}$, and determine the interval(s) where the function is differentiable.

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{1 / 2}-x^{1 / 2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}[\left(\frac{(x+\Delta x)^{1 / 2}-x^{1 / 2}}{\Delta x}\right) \cdot \overbrace{\left(\frac{(x+\Delta x)^{1 / 2}+x^{1 / 2}}{\left.(x+\Delta x)^{1 / 2}+x^{1 / 2}\right)}\right]}^{=1}] \\
& =\lim _{\Delta x \rightarrow 0} \frac{\not x+\Delta x-\not x}{\Delta x\left((x+\Delta x)^{1 / 2}+x^{1 / 2}\right)}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x\left((x+\Delta x)^{1 / 2}+x^{1 / 2}\right)} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{(x+\Delta x)^{1 / 2}+x^{1 / 2}}=\frac{1}{2 x^{1 / 2}}
\end{aligned}
$$

$g^{\prime}(x)=\frac{1}{2 x^{1 / 2}}$ is defined for all $x>0$, i.e., $g(x)=x^{1 / 2}$ is differentiable in the interval $(0, \infty)$.

Let's collect the results from the examples thus far...

- $f(x)=x^{2} \Longrightarrow f^{\prime}(x)=2 x$
- $l(x)=x \Longrightarrow l^{\prime}(x)=1$
- $g(x)=x^{1 / 2} \Longrightarrow g^{\prime}(x)=\frac{1}{2 x^{1 / 2}}$
- $f(x)=\frac{1}{x^{2}} \Longrightarrow f^{\prime}(x)=-\frac{2}{x^{3}}$

Observation: The derivatives of these functions all satisfy the rule

$$
\left(x^{k}\right)^{\prime}=k x^{k-1} .
$$

Notation: It is common to use the notation $\frac{d}{d x}$ for the operation of differentiation-finding a derivative. In other words, we write

$$
\frac{d}{d x} f(x)=f^{\prime}(x)
$$

Power rule: If k is any real number, then

$$
\frac{d}{d x}\left(x^{k}\right)=k x^{k-1} .
$$

Comment: This rule is relatively easy to justify if k is a positive integer (as done in the book). It is not much harder to do if k is a negative integer. When k is a rational number (not an integer) the justification is more challenging, and the most challenging case is when k is irrational.

More basic rules...
Constant functions:

$$
\frac{d}{d x} C=0
$$

Because

$$
\frac{d}{d x} C=\lim _{h \rightarrow 0} \frac{C-C}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=\lim _{h \rightarrow 0} 0=0 .
$$

${ }^{*}$) This agrees with the fact that the graph of a constant function is a horizontal line, and the slope of a horizontal line is 0 .

Sums and differences:

$$
\frac{d}{d x}(f(x) \pm g(x))=f^{\prime}(x) \pm g^{\prime}(x)
$$

Because (for sums, differences are handled analogously)

$$
\begin{aligned}
\frac{d}{d x}(f(x)+g(x)) & =\lim _{h \rightarrow 0} \frac{(f(x+h)+g(x+h))-(f(x)+g(x))}{h} \\
& =\lim _{h \rightarrow 0} \frac{(f(x+h)-f(x))+(g(x+h)-g(x))}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}+\frac{g(x+h))-g(x)}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h))-g(x)}{h} \\
& =f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
$$

Example 7:

$$
\frac{d}{d x}\left(x^{2}+\frac{1}{x}\right)=\frac{d}{d x}\left(x^{2}+x^{-1}\right)=2 x+(-1) \cdot x^{-2}=2 x-x^{-2}
$$

Constant multiples:

$$
\frac{d}{d x}(C f(x))=C f^{\prime}(x) .
$$

Because

$$
\begin{aligned}
\frac{d}{d x}(C f(x)) & =\lim _{h \rightarrow 0} \frac{C f(x+h)-C f(x)}{h} \\
& =\lim _{h \rightarrow 0} C\left(\frac{f(x+h)-f(x)}{h}\right) \\
& =C \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=C f^{\prime}(x)
\end{aligned}
$$

Example 8: Find the derivative of $y=2 x^{3}-3 x^{2}+4 x-5$.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(2 x^{3}\right)-\frac{d}{d x}\left(3 x^{2}\right)+\frac{d}{d x}(4 x)-\frac{d}{d x}(5) \\
& =2 \frac{d}{d x}\left(x^{3}\right)-3 \frac{d}{d x}\left(x^{2}\right)+4 \frac{d}{d x}(x)-\frac{d}{d x}(5) \\
& =2\left(3 x^{2}\right)-3(2 x)+4(1)-0=6 x^{2}-6 x+4
\end{aligned}
$$

Example 9: Find the derivative of $f(x)=\frac{3 x^{2}-1}{5 \sqrt{x}}$.
First, simplify the $f(x)$ and rewrite it as a difference of multiples of powers:

$$
f(x)=\frac{3 x^{2}-1}{5 \sqrt{x}}=\frac{3 x^{2}}{5 x^{1 / 2}}-\frac{1}{5 x^{1 / 2}}=\frac{3}{5} x^{3 / 2}-\frac{1}{5} x^{-1 / 2}
$$

Then differentiate

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{3}{5} x^{3 / 2}\right)-\frac{d}{d x}\left(\frac{1}{5} x^{-1 / 2}\right) \\
& =\frac{3}{5} \cdot \frac{d}{d x}\left(x^{3 / 2}\right)-\frac{1}{5} \cdot \frac{d}{d x}\left(x^{-1 / 2}\right) \\
& =\frac{3}{5} \cdot \frac{3}{2} x^{1 / 2}-\frac{1}{5} \cdot\left(-\frac{1}{2}\right) x^{-3 / 2} \\
& =\frac{9}{10} x^{1 / 2}+\frac{1}{10} x^{-3 / 2}
\end{aligned}
$$

