Observation: The derivative $f^{\prime}(x)$ gives the slope (direction) of the graph $y=f(x)$ at each point $(x, f(x))$ on the graph.
${ }^{(*)}$ The second derivative $f^{\prime \prime}(x)$ gives the rate of change of the first derivative $f^{\prime}(x)$.
${ }^{(*)}$ This means that $f^{\prime \prime}(x)$ describes how the slope of the graph is changing, i.e., $f^{\prime \prime}(x)$ describes how the graph is curving.

Specifically:

- If $f^{\prime \prime}(x)>0$, then $f^{\prime}(x)$ is increasing, so the slope of $y=f(x)$ is increasing and the graph is curving up.
- If $f^{\prime \prime}(x)<0$, then $f^{\prime}(x)$ is decreasing, so the slope of $y=f(x)$ is decreasing and the graph is curving down.

The proper term for 'curving up' is convex or concave up.

The proper term for 'curving down' is concave or concave down.

A point on the graph where the concavity changes is called a point of inflection

Example: Find the points of inflection on the graph

$$
y=\frac{1}{2} x^{4}-5 x^{3}+12 x^{2}+6 x+7
$$

Comment: The concavity changes when $y^{\prime \prime}$ changes sign. This can only happen at points where $y^{\prime \prime}=0$ or at points where $y^{\prime \prime}$ is undefined. Step 1. Find possible points of inflection...

$$
\begin{gathered}
y^{\prime}=2 x^{3}-15 x^{2}+24 x+6 \Longrightarrow y^{\prime \prime}=6 x^{2}-30 x+24 \\
y^{\prime \prime}=0 \Longrightarrow 6(x-1)(x-4)=0 \Longrightarrow x=1 \text { or } x=4
\end{gathered}
$$

So there are possible points of inflection at $(1, y(1))=(1,20.5)$ and $(4, y(4))=(4,31)$.

Step 2. Analysis:

- If $x<1$, then $y^{\prime \prime}(x)=6(x-1)(x-4)=(+) \cdot(-) \cdot(-)=(+)$
- If $1<x<4$, then $y^{\prime \prime}(x)=6(x-1)(x-4)=(+) \cdot(+) \cdot(-)=(-)$
- If $4<x$, then $y^{\prime \prime}(x)=6(x-1)(x-4)=(+) \cdot(+) \cdot(+)=(+)$

Conclusion: The graph is concave up for $x<1$, concave down for $1<x<4$ and concave up for $4<x$, and both points, $(1,20.5)$ and $(4,31)$, are inflection points.

Graph of $y=\frac{1}{2} x^{4}-5 x^{3}+12 x^{2}+6 x+7$

Example. Find the points of inflection on the graph $y=4 x^{2} e^{-0.5 x}$.
$\left(^{*}\right) y^{\prime}=8 x e^{-0.5 x}+4 x^{2} e^{-0.5 x} \cdot(-0.5)=e^{-0.5 x}\left(8 x-2 x^{2}\right)$.
$\left.{ }^{*}\right) y^{\prime \prime}=(-0.5) \cdot e^{-0.5 x}\left(8 x-2 x^{2}\right)+e^{-0.5 x}(8-4 x)=e^{-0.5 x}\left(x^{2}-8 x+8\right)$
$\left(^{*}\right)$ Possible inflection points: $y^{\prime \prime}=0 \Longrightarrow x^{2}-8 x+8=0$

$$
\begin{gathered}
\Longrightarrow x=\frac{8 \pm \sqrt{64-32}}{2} \\
\Longrightarrow x_{1}=4-\sqrt{8} \approx 1.17 \text { and } x_{2}=4+\sqrt{8} \approx 6.83 .
\end{gathered}
$$

$\left(^{*}\right)$ Analysis: $y^{\prime \prime}$ can only change at (possible) inflection points...
$\left.\begin{array}{l}y^{\prime \prime}(1)=e^{-0.5}>0 \\ y^{\prime \prime}(4)=-8 e^{-2}<0\end{array}\right\}\left(x_{1}, y_{1}\right) \approx(1.17,3.05)$ is an inflection point
$\left.\begin{array}{l}y^{\prime \prime}(4)=-8 e^{-2}<0 \\ y^{\prime \prime}(8)=8 e^{-4}>0\end{array}\right\}\left(x_{2}, y_{2}\right) \approx(6.83,6.13)$ is an inflection point

Graph of $y=4 x^{2} e^{-0.5 x}$.

Second derivative test, a second explanation.

The second derivative test says that if $f^{\prime}\left(x^{*}\right)=0$ and...
$\left(^{*}\right) \ldots f^{\prime \prime}\left(x^{*}\right)>0$, then $f\left(x^{*}\right)$ is a local minimum value.
$\left(^{*}\right) \ldots f^{\prime \prime}\left(x^{*}\right)<0$, then $f\left(x^{*}\right)$ is a local maximum value.
We can (also) explain this test in terms of the concavity of the graph around the critical point x^{*}.
${ }^{(*)}$ If $f^{\prime \prime}\left(x^{*}\right)>0$, then the graph of $y=f(x)$ is concave up around $\left(x^{*}, f\left(x^{*}\right)\right)$, and if it is also true that $f^{\prime}\left(x^{*}\right)=0$, then the tangent line at $\left(x^{*}, f\left(x^{*}\right)\right)$ is horizontal. The only way to draw this is with $f\left(x^{*}\right)$ being a relative minimum.
$\left.{ }^{*}\right)$ Likewise, if $f^{\prime \prime}\left(x^{*}\right)<0$, then the graph of $y=f(x)$ is concave down around $\left(x^{*}, f\left(x^{*}\right)\right)$, and if it is also true that $f^{\prime}\left(x^{*}\right)=0$, then the tangent line at $\left(x^{*}, f\left(x^{*}\right)\right)$ is horizontal. The only way to draw this is with $f\left(x^{*}\right)$ being a relative maximum.
${ }^{(*)}$ These comments are illustrated on the next two figures.

Relative minimum

Relative maximum

