Differentiating logarithm functions.

To differentiate y = In x, we must return to the definition...
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and simplify, using algebraic properties of Inz...
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and use the continuity of Inx...
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What next?




Remember the special limat...
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do a little renaming...
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observe that h — 0 implies u — 0...
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Returning to — (In x)...

dx
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Example 1.
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Example 2.
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Example 3. Differentiate y = In (52?).

We can use the chain rule again:
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or we can simplify and then differentiate:
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Observation: If b > 0 and b # 1, then log, z = 27 5o
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Example 4. Find the equation of the tangent line to the graph

x4+ 2 —1
y = log, Az — 3

at the point where x = 1.
(*) The line passes through the point (1,y(1)) = (1,1log5(2)) = (1, 1).
(*) The slope is %’(1), and again we simplify before we differentiate:
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(*) The equation of the tangent line is
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Figure 1: Graph of y = log, <%) and its tangent line at (1,1)




Logarithmic differentiation:

The chain rule tells us that
d

— In

dx

This is called the logarithmic derivative of f(x).
(*) Sometimes - In(f(x)) is easier to compute than f’(z).
(*) In these cases we can use the identity

d
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to find f'(x).

We will use this idea in one special, but important case...




Differentiating exponential functions.

Observation: In(a”) = zlna = (Ina)x which is a simpler function (to

differentiate) than a”...

X

dci (In(a ))) =a” - (di(ln a)x) = a” - (Ina) = (Ina)a”

In particular, if a = e, then Ina = 1Ine = 1 and we have

Example 5.
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Example 6.




Example 7. Find the marginal revenue function for the firm whose

demand equation is given by

p — 1562—0.05(].

First, find the revenue function

r = pq = 15¢qe*~ 0074,

Now differentiate, using the product and chain rules:

— 15e270-050 4 15¢e279959(—0.05) = (15 — 0.75¢)e? -0,




The consumption function for a small country is given by

60'95Y
C — In (GO.ZY I 5) ,

where Y is national income, measured in $billions.

(a) How much is consumed when Y = 107
9.5

e2 +5

C(10) = In ( > ~ 6.983

(b) What is the marginal propensity to consume when Y = 107
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= — (0.95Y —1In (¢”*" +5)) =0.95 —
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(c) Compute the limit lim ——, and interpret the result.
Y o0 dY

. dC , 0.2e9-2Y
Y11—I>noo d—Y o Y11—I>noo (095 B 60'2Y —|— 5)

0 2€0°2Y . €_O°2Y

= 0.95 — Yll_{noo (e0-2Y 4 5) . ¢—02Y

0.2 0.2
0.9 Yo 1+ He—02Y 0-95 1 075

Interpretation: When income grows large, the nation will tend to

consume $0.75 of each additional dollar of income.
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