Definition: If $y=f(x)$, then

$$
y^{\prime}=f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Rules and formulas:

1. If $f(x)=C$ (a constant function), then $f^{\prime}(x)=0$.
2. If $f(x)=x^{k}$ (a power function), then $f^{\prime}(x)=k x^{k-1}$.
3. $(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$.
4. $(C \cdot f(x))^{\prime}=C \cdot f^{\prime}(x)$

Notation:

$$
\frac{d}{d x}(f(x))=f^{\prime}(x) .
$$

Example.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{3 x^{2}-5 x+7}{6 x}\right) & =\frac{d}{d x}\left(\frac{3 x^{2}}{6 x}\right)-\frac{d}{d x}\left(\frac{5 x}{6 x}\right)+\frac{d}{d x}\left(\frac{7}{6 x}\right) \\
& =\frac{d}{d x}\left(\frac{1}{2} x\right)-\frac{d}{d x}\left(\frac{5}{6}\right)+\frac{d}{d x}\left(\frac{7}{6} x^{-1}\right) \\
& =\frac{1}{2}-0+\frac{7}{6} \cdot \frac{d}{d x}\left(x^{-1}\right) \\
& =\frac{1}{2}+\frac{7}{6}(-1) x^{-2}=\frac{1}{2}-\frac{7}{6} x^{-2}\left(=\frac{3 x^{2}-7}{6 x^{2}}\right)
\end{aligned}
$$

Setting $f(x+\Delta x)-f(x)=\Delta y$, we can rewrite the definition of the derivative as

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} .
$$

$\left({ }^{*}\right)$ This leads to another common way of denoting the derivative:

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} .
$$

${ }^{(*)}$ Notation. We use the following, interchangeable notations for the derivative of the function $y=f(x)$:

$$
y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}=\frac{d f}{d x} .
$$

${ }^{(*)}$ Evaluation notation. If x_{0} is a specific point and we want to evaluate $f^{\prime}(x)$ at x_{0}, we write this in one of the following ways:

$$
y^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=\left.\frac{d y}{d x}\right|_{x=x_{0}}=\left.\frac{d f}{d x}\right|_{x=x_{0}} .
$$

Linear Approximation:

We begin with the definition of the derivative for a function $y=f(x)$ at a point x_{0} :

$$
f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} .
$$

" $\lim _{\Delta x \rightarrow 0}$ " in the equation above means that if $\Delta x \approx 0$ (but $\Delta x \neq 0$), then

$$
\begin{equation*}
\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} \approx f^{\prime}\left(x_{0}\right) . \tag{1}
\end{equation*}
$$

Multiplying this approximate equality by Δx results in a very useful approximation:

$$
\begin{equation*}
f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right) \approx f^{\prime}\left(x_{0}\right) \Delta x \tag{2}
\end{equation*}
$$

Observation: If $|\Delta x|<1$, then the second approximation (2) is even more accurate than the first approximation (1).

Two useful variants:

1. If we write $\Delta y=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)$, then we can express the approximation (2) as

$$
\begin{equation*}
\Delta y \approx f^{\prime}\left(x_{0}\right) \Delta x \tag{3}
\end{equation*}
$$

2. If we write $x=x_{0}+\Delta x$, so $\Delta x=x-x_{0}$, and add $f\left(x_{0}\right)$ to both sides of (2), then this approximation takes the form

$$
\begin{equation*}
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \tag{4}
\end{equation*}
$$

Observations:

1. The function of x on the right of (4) is a linear function and this approximation formula says that if $x \approx x_{0}$, then we can approximate $f(x)$ by the linear function $T(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$. For this reason, this approximation is frequently called linear approximation.
2. This approximation is also called tangent line approximation because the graph of the linear function $y=T(x)$ above is the tangent line to the graph $y=f(x)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$.

Figure 1: Linear approximation, illustrated.

Example 1. Find an approximate value for $\sqrt{26}$.
$\left(^{*}\right)$ Write $f(x)=\sqrt{x}=x^{1 / 2}$, then $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}$.
$\left(^{*}\right)$ We don't know $\sqrt{26}$ but we do know that $\sqrt{25}=5$, so we set $x_{0}=25$ and $x=26$. Then, using linear approximation we have

$$
\sqrt{26}=f(26) \approx f(25)+f^{\prime}(25)(26-25)=5+\frac{1}{10} \cdot 1=5.1
$$

(*) My calculator says that $\sqrt{26}=5.09901951 \ldots$. Based on this, the error of this approximation is less than 0.001 .
Question: How can we obtain a more accurate estimate of $\sqrt{26}$ using linear approximation?

Answer: Choose x_{0} closer to 26 , so that $\Delta x=26-x_{0}$ is closer to 0 . For this to be useful, we also need to know $\sqrt{x_{0}}$ precisely, which means that $\sqrt{x_{0}}$ must be a rational number.

For example, we can choose $x_{0}=5.1^{2}=26.01$ which satisfies both conditions. In this case,

$$
f\left(x_{0}\right)=\sqrt{26.01}=5.1 \text { and } f^{\prime}\left(x_{0}\right)=\frac{1}{2 \sqrt{26.01}}=\frac{1}{10.2}=\frac{5}{51}
$$

With this choice, linear approximation gives

$$
\begin{aligned}
\sqrt{26} & =f(26) \approx f(26.01)+f^{\prime}(26.01)(26-26.01) \\
& =5.1+\frac{5}{51}\left(-\frac{1}{100}\right) \\
& =\frac{51}{10}-\frac{1}{1020}=\frac{5201}{1020}=5.0990196078 \ldots
\end{aligned}
$$

Comparing this estimate to the calculator value for $\sqrt{26}$ shows that the error of approximation is less than 0.0000001 .

Example 2. The marginal propensity to consume of a small nation is given by

$$
\frac{d C}{d Y}=\frac{9 Y+10}{10 Y+1}
$$

where the nation's income Y and consumption $C=f(Y)$ are both measured in billions of dollars.

The nation's current income is $\$ 8$ billion. By approximately how much will consumption increase if income increases by $\$ 400$ million.
First, observe that $\Delta Y=\frac{400,000,000}{1,000,000,000}=0.4$, because of the units of measurement.
Now use linear approximation in the form of equation (3) (\leftarrow click)

$$
\left.\Delta C \approx \frac{d C}{d Y}\right|_{Y=8} \cdot \Delta Y=\frac{9 \cdot 8+10}{10 \cdot 8+1} \cdot 0.4 \approx 0.405
$$

Interpretation: Based on this model, if national income increases by $\$ 400$ million from its current level, national consumption will increase by about $\$ 405$ million (so the nation will incur about $\$ 5$ million in debt).

Economic terminology.

If $c=f(q)$ is a cost function (c is the cost of producing q units of output), then the cost of producing the next unit of output is called the marginal cost. I.e.,

$$
\text { marginal cost }=M C=c(q+1)-c(q) .
$$

If $\frac{d c}{d q}$ is the derivative of the cost function, then linear approximation says that

$$
M C=\left.\Delta c \approx \frac{d c}{d q}\right|_{q=q_{0}} \cdot \Delta q=\left.\frac{d c}{d q}\right|_{q=q_{0}}
$$

because $\Delta q=1$ in this case.
${ }^{(*)}$ We call $\frac{d c}{d q}$ the marginal cost function.
${ }^{*}$) More generally, if $v=g(u)$ is any function involving economic variables, the derivative $d v / d u$ is typically called the marginal \qquad function, or the the marginal \qquad of/to \qquad .

