Properties of limits.

From the *definition* of the limit, the following *shortcuts* can be derived. **1.** If f(x) = c is a constant function, then $\lim_{x \to a} f(x) = c$, for any a. **2.** If n is a positive integer, then $\lim x^n = a^n$, for any a. **3.** If β is any real number, then $\lim_{x \to a} x^{\beta} = a^{\beta}$, for any a > 0. 4. If a > 0, then $\lim \ln x = \ln a$ $x \rightarrow a$ 5. For all real numbers a, $\lim_{x \to a} e^x = e^a$ * If the limits $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ both exist, then ... $\lim_{x \to a} \left(f(x) \pm g(x) \right) = \left(\lim_{x \to a} f(x) \right) \pm \left(\lim_{x \to a} g(x) \right)$ **6.** $\lim_{x \to a} \left(f(x) \cdot g(x) \right) = \left(\lim_{x \to a} f(x) \right) \cdot \left(\lim_{x \to a} g(x) \right)$ 7. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ provided that } \lim_{x \to a} g(x) \neq 0.$ 8.

Properties of limits (continued).

- **9.** If $\lim_{x \to a} f(x) = L$ and $\lim_{u \to L} g(u) = M$, then $\lim_{x \to a} g(f(x)) = M$.
- * This rule has some useful special cases: If $\lim_{x \to a} f(x) = L$, then...
- **9.1** If *n* is a positive integer, then $\lim_{x \to a} (f(x)^n) = \left(\lim_{x \to a} f(x)\right)^n = L^n$.

9.2 If
$$L > 0$$
, then $\lim_{x \to a} (f(x)^{\beta}) = \left(\lim_{x \to a} f(x)\right)^{\beta} = L^{\beta}$, for any β

9.3 If L > 0, then $\lim_{x \to a} (\ln(f(x))) = \ln\left(\lim_{x \to a} f(x)\right) = \ln(L)$.

9.4
$$\lim_{x \to a} \left(e^{f(x)} \right) = e^{\left(\lim_{x \to a} f(x) \right)} = e^{L}$$

 \star And finally, another useful tool for evaluating limits:

10. If
$$f(x) = g(x)$$
 for $x \neq a$, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$.
 \Rightarrow Either both limits exist and are the same, or neither limit exists

Example 1. Find $\lim_{x\to 3} \frac{x^2+1}{x-1}$. Solution:

$$\lim_{x \to 3} \frac{x^2 + 1}{x - 1} = \frac{\lim_{x \to 3} x^2 + 1}{\lim_{x \to 3} x - 1}$$

using the rule for quotients

$$= \frac{\lim_{x \to 3} x^2 + \lim_{x \to 3} 1}{\lim_{x \to 3} x - \lim_{x \to 3} 1}$$

using the rule for sums and differences

$$=\frac{9+1}{3-1}=5$$

using the rules for powers and constants.

Example 2. Find $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$.

Solution: Observe that the rule for quotients doesn't apply here, because $\lim_{x\to 3} x - 3 = 0$. For this limit, we have to use some algebra and rule 10 first, as follows.

First, if $x \neq 3$, then

$$\frac{x^2 - 9}{x - 3} = \frac{(x - 3)(x + 3)}{x - 3} = x + 3.$$

Therefore, by rule 10:

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} x + 3 = 3 + 3 = 6.$$

A special limit

$$\lim_{u \to 0} \left(1 + u \right)^{1/u} = e \approx 2.7182818283459.$$

We can evaluate the limit in Example 2 from Wednesday, using this limit and the following steps.

(1) $(1+0.02x)^{1/x} = (1+0.02x)^{\frac{1}{0.02x} \cdot (0.02)} = \left[(1+0.02x)^{1/(0.02x)} \right]^{0.02}$ (2) This means that

$$\lim_{x \to 0} (1 + 0.02x)^{1/x} = \lim_{x \to 0} \left[(1 + 0.02x)^{1/(0.02x)} \right]^{0.02}$$
$$= \left[\lim_{x \to 0} (1 + 0.02x)^{1/(0.02x)} \right]^{0.02}$$

because of property 9.2, above.

(3) Finally, rename 0.02x = u and observe that if $x \to 0$, then $u \to 0$, so

$$\left[\lim_{x \to 0} \left(1 + 0.02x\right)^{1/(0.02x)}\right]^{0.02} = \left[\lim_{u \to 0} \left(1 + u\right)^{1/u}\right]^{0.02} = e^{0.02} \approx 1.02020134.$$

One-sided limits

In some examples, we want to consider the behavior of a function f(x) on either side of the limiting point a *separately*.

Example: Suppose that

$$f(x) = \begin{cases} \sqrt{x} : x \ge 0\\ \sqrt{x^2 + 1} : x < 0 \end{cases}$$

What can we say about $\lim_{x\to 0} f(x)$?

(*) If x > 0 and $x \to 0$, then $f(x) = \sqrt{x} \to 0$. We say in this case

the limit of f(x) as x approaches 0 from the right is equal to 0 and write

$$\lim_{x \to 0^+} f(x) = 0$$

This is called a right-hand limit.

(*) If x < 0 and $x \to 0$, then $f(x) = \sqrt{x^2 + 1} \to \sqrt{1} = 1$. We say in this case

the limit of f(x) as x approaches 0 from the left is equal to 1 and write

$$\lim_{x \to 0^-} f(x) = 1$$

This is called a left-hand limit.

(*) In this example both the left- and right-hand limits exist, but the two-sided limit

 $\lim_{x \to 0} f(x) \quad does \ not \ exist$

because there is no single number L that f(x) approaches as $x \to 0$.

Definitions:

The limit of f(x) as x approaches a **from the right** is equal to L, written

$$\lim_{x \to a^+} f(x) = L,$$

if |f(x) - L| can be made as small as we want by making x - a as small as we need with x > a.

The limit of f(x) as x approaches a **from the left** is equal to L, written

$$\lim_{x \to a^-} f(x) = L,$$

if |f(x) - L| can be made as small as we want by making a - x as small as we need with x < a.

Observation: $\lim_{x \to a} f(x)$ exists if and only if $\lim_{x \to a^+} f(x)$ and $\lim_{x \to a^-} f(x)$ both exist and are equal to each other. I.e.,

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x)$$

Example: Suppose that

$$g(x) = \begin{cases} x^2 + 1 & : x \ge 1\\ \frac{x^2 - 1}{x - 1} & : x < 1 \end{cases}$$

Find the limit $\lim_{x \to 1} g(x)$, or explain why it does not exist.

(*)
$$\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} x^2 + 1 = 1 + 1 = 2.$$

and

(*)
$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^{-}} \frac{(x - 1)(x + 1)}{x - 1}$$

= $\lim_{x \to 1^{-}} x + 1 = 1 + 1 = 2$

Therefore

$$\lim_{x \to 1} g(x) = \lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{+}} g(x) = 2$$

'Infinite' limits.

If f(x) grows larger and larger without bound as x approaches some point a, then we say that f(x) is approaching infinity as x approaches a and write

$$\lim_{x \to a} f(x) = \infty.$$

Likewise, If f(x) grows more and more negative without (lower) bound as x approaches some point a, then we say that f(x) is approaching negative infinity as x approaches a and write

$$\lim_{x \to a} f(x) = -\infty.$$

(*) If f(x) exhibits one of these behaviors on only one side of a or the other, then we use one-sided limits to describe the situation.

Example: $\lim_{x \to 0} \frac{1}{x}$ does not exist, but we can observe that

$$\lim_{x \to 0^+} \frac{1}{x} = \infty \quad \text{and} \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty.$$

Limits 'at infinity'

(*) The *limit at infinity* of a function f(x) describes (certain aspects of) the behavior of f(x) as the variable x grows larger and larger.

Example 1: What happens to the values of $f(x) = \frac{1}{x}$ as x grows without bound?

x	$\frac{1}{x}$
1	1
100	0.01
10,000	0.0001
1,000,000	0.000001 99 0s
10^{100}	$0.00\dots 01$

Observations:

(i) As k grows bigger (and 10^k grows even faster), $\frac{1}{10^k}$ approaches 0. (ii) If $10^k < x$, then $0 < \frac{1}{x} < \frac{1}{10^k}$, so $\frac{1}{x}$ approaches 0 as x grows large.

Definition:

The limit of f(x) as x 'approaches infinity' is equal to L, written

$$\lim_{x \to \infty} f(x) = L,$$

if |f(x) - L| can be made as small as we want by choosing x as large as necessary.

In other words, 'approaching infinity' means getting large without bound. More formal definition:

 $\lim_{x \to \infty} f(x) = L \text{ means that given } \varepsilon > 0, \text{ there is an } M \text{ such that} \\ |f(x) - L| < \varepsilon \text{ for all } x > M. \\ \text{Example: } \lim_{x \to \infty} \frac{1}{x} = 0 \text{ because given } \varepsilon > 0, \text{ if } x > M = \frac{1}{\varepsilon}, \text{ then} \\ \left| \frac{1}{x} - 0 \right| = \frac{1}{x} < \frac{1}{M} = \frac{1}{1/\varepsilon} = \varepsilon. \end{cases}$

- 1. The rules for constant functions and for sums and differences of limits are valid for limits at infinity.
- 2. The rules for products and quotients of limits are equally valid for limits at infinity, as long as the component limits are finite. In particular, the expressions $\frac{\infty}{\infty}$ and $0 \cdot \infty$ are meaningless.

3. If k > 0, then $\lim_{x \to \infty} x^k = \infty$, i.e., x^k grows larger as x grows larger.

4. If
$$k < 0$$
, then $\lim_{x \to \infty} x^k = \lim_{x \to \infty} \frac{1}{x^{|k|}} = 0$.

5. More generally, if $\lim_{x \to \infty} f(x) = \infty$, then $\lim_{x \to \infty} \frac{1}{f(x)} = 0$.

6. If a > 0, then $\lim_{x \to \infty} e^{ax} = \infty$ and therefore $\lim_{x \to \infty} e^{-ax} = \lim_{x \to \infty} \frac{1}{e^{ax}} = 0$.

7. Exponential growth. If a > 0, then for any k

$$\lim_{x \to \infty} \frac{x^k}{e^{ax}} = 0$$