Example 1. What happens to the expression

$$
P(x)=(1+0.02 x)^{1 / x}
$$

as x approaches 1 ?

x	$P(x)$
1.5	~ 1.019901
1.25	~ 1.01995
1.1	~ 1.01998
1.01	~ 1.09998
0.5	1.0201
0.9	~ 1.02002
0.99	~ 1.020002

Observation:

As x approaches $1, P(x)$ appears to be approaching $1.02=P(1)$.

Example 2. What happens to the expression

$$
P(x)=(1+0.02 x)^{1 / x}
$$

as x approaches 0 ?

x	$P(x)$
1	1.02
$1 / 2$	1.0201
$1 / 12$	~ 1.020184356
$1 / 52$	~ 1.020197417
$1 / 365$	~ 1.020200781
$1 / 20000$	~ 1.020201329

The variable x can also approach 0 through negative values:

x	$P(x)$
-1	~ 1.020408163
$-1 / 2$	~ 1.020304051
$-1 / 10$	~ 1.020221772
$-1 / 80$	~ 1.020203891
$-1 / 200$	~ 1.020202360
$-1 / 10000$	~ 1.020201316

Observations:

(i) $P(x)$ is not defined when $x=0$ (why?).
(ii) It appears that as x approaches $0, P(x)$ approaches some number

$$
\tau \approx 1.0202013 \ldots
$$

Example 3. What happens to the expression

$$
Q(x)=\frac{\sqrt{x}-2}{x-4}
$$

as x approaches 0 ?

x	$Q(x)$
1	$1 / 3 \approx 0.3333$
$1 / 2$	~ 0.3694
$1 / 4$	0.4
$1 / 9$	$3 / 7 \approx 0.4286$
$1 / 100$	$10 / 21 \approx 0.4762$
$1 / 10000$	$19900 / 39999 \approx 0.4975$

Observations:

(i) As x approaches $0, Q(x)$ appears to be approaching $0.5=Q(0)$.
(ii) We can only approach 0 from the right in this case (why?).

Example 4. What happens to the expression

$$
Q(x)=\frac{\sqrt{x}-2}{x-4}
$$

as x approaches $4 ?$

x	$Q(x)$
3	~ 0.26795
3.5	~ 0.25834
3.9	~ 0.25158
4.5	~ 0.24264
4.1	~ 0.24846
4.01	~ 0.24984

Observations:

(i) $Q(x)$ is not defined at $x=4$ (why?).
(ii) As x approaches $4, Q(x)$ appears to be approaching 0.25 .

Definition of 'Limit':

The limit of $\boldsymbol{f}(\boldsymbol{x})$ as \boldsymbol{x} approaches \boldsymbol{a} is equal to \boldsymbol{L}, written

$$
\lim _{x \rightarrow a} f(x)=L
$$

if we can make the difference $|f(x)-L|$ as small as we like by taking x sufficiently close to a, but not equal to a.

If there is no number \boldsymbol{L} satisfying this condition, then the limit does not exist.

The technical definition:

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for any $\varepsilon>0$, there is a $\delta>\mathbf{0}$ such that if $0<|x-a|<\delta$, then $|f(x)-L|<\varepsilon$.

Figure 1: Graphic interpretation of $\lim _{x \rightarrow a} f(x)=L$
Notice that the value of the function $f(x)$ at the point $x=a$ does not appear in the graph above. The value $f(a)$ (if it exists) is irrelevant to the definition of the limit.
On the other hand in many cases, $\lim _{x \rightarrow a} f(x)=f(a)$, as we shall see.

Properties of limits.

From the definition of the limit, the following shortcuts can be derived.

1. If $f(x)=c$ is a constant function, then $\lim _{x \rightarrow a} f(x)=c$, for any a.
2. If n is a positive integer, then $\lim _{x \rightarrow a} x^{n}=a^{n}$, for any a.
3. If β is any real number, then $\lim _{x \rightarrow a} x^{\beta}=a^{\beta}$, for any $a>0$.
4. If $a>0$, then $\lim _{x \rightarrow a} \ln x=\ln a$
5. For all real numbers $a, \lim _{x \rightarrow a} e^{x}=e^{a}$
\star If the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist, then \ldots
6. $\lim _{x \rightarrow a}(f(x) \pm g(x))=\left(\lim _{x \rightarrow a} f(x)\right) \pm\left(\lim _{x \rightarrow a} g(x)\right)$
7. $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\left(\lim _{x \rightarrow a} f(x)\right) \cdot\left(\lim _{x \rightarrow a} g(x)\right)$
8. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$, provided that $\lim _{x \rightarrow a} g(x) \neq 0$.

Properties of limits (continued).

9. If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{u \rightarrow L} g(u)=M$, then $\lim _{x \rightarrow a} g(f(x))=M$.
\star This rule has some useful special cases: If $\lim _{x \rightarrow a} f(x)=L$, then...
9.1 If n is a positive integer, then $\lim _{x \rightarrow a}\left(f(x)^{n}\right)=\left(\lim _{x \rightarrow a} f(x)\right)^{n}=L^{n}$.
9.2 If $L>0$, then $\lim _{x \rightarrow a}\left(f(x)^{\beta}\right)=\left(\lim _{x \rightarrow a} f(x)\right)^{\beta}=L^{\beta}$, for any β.
9.3 If $L>0$, then $\lim _{x \rightarrow a}(\ln (f(x)))=\ln \left(\lim _{x \rightarrow a} f(x)\right)=\ln (L)$.
$9.4 \lim _{x \rightarrow a}\left(e^{f(x)}\right)=e^{\left(\lim _{x \rightarrow a} f(x)\right)}=e^{L}$.

* And finally, another useful tool for evaluating limits:

10. If $f(x)=g(x)$ for $x \neq a$, then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.
\Rightarrow Either both limits exist and are the same, or neither limit exists.

Example 4. (revisited)
We can use Property 10 (and some of the other properties) to evaluate the limit in Example 4 (and confirm our observation there).
First we observe that as long as $x \neq 4$ (and $x \geq 0)$

$$
\frac{\sqrt{x}-2}{x-4}=\frac{\sqrt{x}-2}{x-4} \cdot 1=\frac{\sqrt{x}-2}{x-4} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2}=\frac{x-4}{(x-4)(\sqrt{x}+2)}=\frac{1}{\sqrt{x}+2} .
$$

We now proceed to evaluate the limit:

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} & =\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2} \quad(\text { property } 10) \\
& =\frac{\lim _{x \rightarrow 4} 1}{\lim _{x \rightarrow 4}\left(x^{1 / 2}+2\right)} \quad\left(\text { property } 8 \text { and } \sqrt{x}=x^{1 / 2}\right) \\
& =\frac{1}{\lim _{x \rightarrow 4} x^{1 / 2}+\lim _{x \rightarrow 4} 2} \quad(\text { properties } 1 \text { and } 6) \\
& =\frac{1}{4^{1 / 2}+2}=\frac{1}{4} \quad(\text { properties } 1 \text { and } 3)
\end{aligned}
$$

