Example. If $f(x)=2 x^{3}-4 x^{2}+5 x+1$, then

$$
f^{\prime}(x)=6 x^{2}-8 x+5
$$

Observation: $f^{\prime}(x)$ is also a differentiable function...

$$
\frac{d}{d x}\left(f^{\prime}(x)\right)=\frac{d}{d x}\left(6 x^{2}-8 x+5\right)=12 x-8
$$

The derivative of $f^{\prime}(x)$ is called the second derivative of $f(x)$, and is denoted by $f^{\prime \prime}(x)$.
Observation: $f^{\prime \prime}(x)$ is also a differentiable function...

$$
\frac{d}{d x}\left(f^{\prime \prime}(x)\right)=\frac{d}{d x}(12 x-8)=12
$$

The derivative of $f^{\prime \prime}(x)$ is called the third derivative of $f(x)$, and is denoted by $f^{\prime \prime \prime}(x)$.

And so on...

Higher order derivatives.

The derivatives of the derivatives (of the derivatives, etc.) of $y=f(x)$ are called the higher order derivatives of $f(x)$.

Notation: We use the following notations interchangeably for derivatives and higher order derivatives of a function $y=f(x)$
(First) derivative: $\quad y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}=\frac{d}{d x}(f(x))$
Second derivative: $\quad y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d^{2}}{d x^{2}}(f(x))$
Third derivative: $\quad y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)=\frac{d^{3} y}{d x^{3}}=\frac{d^{3}}{d x^{3}}(f(x))$
Fourth derivative: $\quad y^{(4)}=f^{(4)}(x)=\frac{d^{4} y}{d x^{4}}=\frac{d^{4}}{d x^{4}}(f(x))$
$n^{t h}$ derivative: $\quad y^{(n)}=f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}=\frac{d^{n}}{d x^{n}}(f(x))$

Observation: For derivatives of order 4 or higher, people generally do not write expressions like

$$
f_{f^{\prime \prime \prime}}^{17}(x)
$$

For obvious reasons.
Example. Find the third derivative of the function $w=\sqrt{u}$.
First, write $w=u^{1 / 2}$, then

$$
\frac{d w}{d u}=\frac{1}{2} u^{-1 / 2} \quad \Longrightarrow \quad \frac{d^{2} w}{d u^{2}}=-\frac{1}{4} u^{-3 / 2} \quad \Longrightarrow \quad \frac{d^{3} w}{d u^{3}}=\frac{3}{8} u^{-5 / 2}
$$

Example. Find the second derivative of $f(x)=\ln \left(x^{2}+1\right)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x^{2}+1} \cdot 2 x=\frac{2 x}{x^{2}+1} \\
\Longrightarrow f^{\prime \prime}(x) & =\frac{2\left(x^{2}+1\right)-2 x \cdot 2 x}{\left(x^{2}+1\right)^{2}}=\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

The derivative, $f^{\prime}(x)$, gives the rate of change of $y=f(x)$ with respect to x, and gives useful information about the function.
What do higher order derivatives tell us?
$\left(^{*}\right)$ We will see that the second derivative $f^{\prime \prime}(x)$ has an observable geometric interpretation, describing an important aspect of the shape of the graph of $y=f(x)$.
${ }^{*}$) Another way we can use higher order derivatives is to improve on linear approximation.

Example. The graph of the function $f(x)=\sqrt{-x^{2}+4 x+25}-2$, and the graph of the linear approximation to this graph at the point $(4,3)$, $T(x)=3-0.4(x-4)$, are both displayed in the figure below.

Observations:

1. The linear approximation is good when $x \approx 4$, say $3.5<x<4.5$.
2. Linear approximation becomes much less accurate as x moves away from 4.

Why?

One explanation is that the graph of $y=T(x)$ is a straight line with constant slope, but the slope of $y=f(x)$ is changing, and as x moves away from 4, the graph $y=f(x)$ bends away from the graph $y=T(x)$. In other words, the linear approximation $f(x) \approx T(x)$ is

- Reasonably good when $x \approx 4$ because $T(4)=f(4)$ and $T^{\prime}(4)=$ $f^{\prime}(4)$, but
- less accurate when x moves away from 4 because the slope of $T(x)$ is not changing like the slope of $f(x)$

Idea: To improve on linear approximation, find a function $T_{2}(x)$ with the following properties.
(i) $T_{2}(4)=f(4)$
(ii) $T_{2}^{\prime}(4)=f^{\prime}(4)$
(iii) $T_{2}^{\prime \prime}(4)=f^{\prime \prime}(4)$

This condition means that the slope of T_{2} is changing at the same rate as f when $x=4$.
(iv) and T_{2} should be as 'simple' a function as possible.
$\left({ }^{*}\right)$ A linear function won't work here, because if T_{2} is linear, then $T_{2}^{\prime \prime}=0$ but $f^{\prime \prime}(4) \neq 0$.
$\left.{ }^{*}\right)$ The next simplest type of function is quadratic, so we try something like

$$
T_{2}(x)=A+B(x-4)+C(x-4)^{2} .
$$

(Using $(x-4)$ instead of x makes the algebra easier.)

Condition (i):

$$
T_{2}(4)=f(4) \Longrightarrow A+B(4-4)+C(4-4)^{2}=f(4) \Longrightarrow A=f(4) .
$$

Condition (ii):

$$
T_{2}^{\prime}(4)=f(4) \Longrightarrow B+2 C(x-4)=f^{\prime}(4) \Longrightarrow B=f^{\prime}(4)
$$

Condition (iii):

$$
T_{2}^{\prime \prime}(4)=f^{\prime \prime}(4) \Longrightarrow 2 C=f^{\prime \prime}(4) \Longrightarrow C=\frac{f^{\prime \prime}(4)}{2}
$$

Conclusion: $T_{2}(x)=f(4)+f^{\prime}(4)(x-4)+\frac{f^{\prime \prime}(4)}{2}(x-4)^{2}$

Calculations:

$$
\begin{gathered}
f(x)=\left(-x^{2}+4 x+25\right)^{1 / 2}-2 \Longrightarrow f(4)=3 \\
f^{\prime}(x)=\frac{1}{2}\left(-x^{2}+4 x+25\right)^{-1 / 2} \cdot(-2 x+4)=(2-x)\left(-x^{2}+4 x+25\right)^{-1 / 2} \\
\Longrightarrow f^{\prime}(4)=-0.4 \\
f^{\prime \prime}(x)=(-1)\left(-x^{2}+4 x+25\right)^{-1 / 2} \\
+(2-x)\left(-\frac{1}{2}\right)\left(-x^{2}+4 x+25\right)^{-3 / 2}(4-2 x) \\
=-\left[\left(-x^{2}+4 x+25\right)^{-1 / 2}+(2-x)^{2}\left(-x^{2}+4 x+25\right)^{-3 / 2}\right] \\
\Longrightarrow f^{\prime \prime}(4)=-(0.2+4 \cdot 0.008)=-0.232
\end{gathered}
$$

Final conclusion:
$T_{2}(x)=3-0.4(x-4)-\frac{0.232}{2}(x-4)^{2}=3-0.4(x-4)-0.116(x-4)^{2}$

Linear and quadratic approximations to $f(x)=\sqrt{-x^{2}+4 x+25}-2$.

Definition: The quadratic Taylor polynomial for the function $y=f(x)$, centered at $\left(x_{0}, f\left(x_{0}\right)\right.$, is the function

$$
T_{2}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}
$$

This function has the properties

- $T_{2}\left(x_{0}\right)=f\left(x_{0}\right)$
- $T_{2}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)$
- $T_{2}^{\prime \prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)$

Quadratic approximation: If $x \approx x_{0}$, then $f(x) \approx T_{2}(x)$.
Observation: $T_{2}(x)=T(x)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}$. I.e., $T_{2}(x)$ 'corrects' the linear approximation $T(x)$ by adding a quadratic term.

Example. Find the quadratic Taylor polynomial for $f(x)=\sqrt{x}$, centered at $x_{0}=25$.
We need to find $f(25), f^{\prime}(25)$ and $f^{\prime \prime}(25) \ldots$

$$
f(x)=\sqrt{x}=x^{1 / 2} \Longrightarrow f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \text { and } f^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2}
$$

so $f(25)=25^{1 / 2}=5$ and

$$
f^{\prime}(25)=\frac{1}{2} 25^{-1 / 2}=\frac{1}{10} \text { and } f^{\prime \prime}(25)=-\frac{1}{4} 25^{-3 / 2}=-\frac{1}{500}
$$

So...

$$
\begin{aligned}
T_{2}(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2} \\
& =5+\underbrace{\frac{1}{10}}_{f^{\prime}(25)}(x-25) \underbrace{-\frac{1}{1000}}_{f^{\prime \prime}(25) / 2}(x-25)^{2}
\end{aligned}
$$

Question: How well does quadratic approximation do (a) compared to linear approximation and (b) overall?

Answer 1: It looks great, based on the pretty picture - better than linear and close overall for $20<x<30$.

Answer 2: Some numerical comparisons:

x	$T(x)$	$T_{2}(x)$	\sqrt{x} (calculator)	$\|\sqrt{x}-T(x)\|$	$\left\|\sqrt{x}-T_{2}(x)\right\|$
25	5	5	5	0	0
24	4.9	4.899	$4.898979 \ldots$	>0.001	<0.000021
26	5.1	5.099	$5.099019 \ldots$	>0.0009	<0.00002
23	4.8	4.796	$4.795831 \ldots$	>0.004	<0.00017
27	5.2	5.196	$5.196152 \ldots$	>0.003	<0.00016
20	4.5	4.475	$4.472135 \ldots$	>0.027	<0.0029
30	5.5	5.475	$5.477225 \ldots$	>0.022	<0.0023
16	4.1	4.019	4	0.1	0.019
36	6.1	5.979	6	0.1	0.021

