1. (7 pts) Find the absolute minimum and absolute maximum values of the function $g(u) = u^3 - 9u^2 + 15u + 7$ in the interval [0, 8].

Step 1. Find critical point(s) ...

$$g'(u) = 3u^2 - 18u + 15 = 3(u^2 - 6u + 5) = 3(u - 1)(u - 5);$$
 $g'(u) = 0 \implies u_1 = 1 \text{ or } u_2 = 5$

Observation: Both critical points lie in the interval [0, 8].

Step 2. Evaluate g(u) at the endpoints of the interval and at the critical points in the interval—the largest value will be the maximum and the smallest value will be the minimum...

 $\begin{array}{c|cccc} u & g(u) \\ \hline 0 & 7 \\ 1 & 14 \\ 5 & -18 & \Leftarrow & \text{absolute minimum in } [0,8] \\ 8 & 63 & \Leftarrow & \text{absolute maximum in } [0,8] \end{array}$

2. (6 pts) Find the *absolute minimum* value of the function $h(t) = 0.05t + 17 + \frac{200}{t}$ in the interval $(0, \infty)$. Justify your claim that the value you found is the absolute minimum.

Step 1. Find critical point(s) ...

$$h'(t) = 0.05 - 200t^{-2}; \quad h'(t) = 0 \implies 200t^{-2} = 0.05 \implies t^2 = \frac{200}{0.05} = 4000 \implies t = \pm\sqrt{4000}$$

Observation: There is only one critical point in the interval $(0, \infty)$: $t^* = \sqrt{4000} \approx 63.25$.

Step 2. Classify the critical value using the first derivative test <u>or</u> the second derivative test... First derivative test: h'(1) = 0.05 - 200 = -199.95 < 0 and $h'(100) = 0.05 - \frac{200}{100^2} = 0.03 > 0$, so $h(\sqrt{4000}) \approx 23.325$ is a relative minimum value.

Second derivative test: $h''(t) = 400t^{-3}$ and $h''(\sqrt{4000}) = 200 \times 4000^{-3/2} \approx 0.0008 > 0$, so $h(\sqrt{4000}) \approx 23.325$ is a relative minimum value.

Step 3. Conclusion: $h(\sqrt{4000}) \approx 23.325$ is a relative minimum value and $t^* = \sqrt{400}$ is the only critical point in $(0, \infty)$, so $h(\sqrt{4000}) \approx 23.325$ is the absolute minimum value in in $(0, \infty)$.

3. (7 pts) Find the critical point(s) and critical value(s) of the function $f(x) = 5x^2e^{-0.25x}$ and use the *first derivative test* to classify the critical value(s) as relative minima, relative maxima or neither.

Step 1. Find the critical point(s)...

$$f'(x) = 10xe^{-0.25x} + 5x^2e^{-0.25x} \cdot (-0.25) = 5xe^{-0.25x}(2 - 0.25x); \quad f'(x) = 0 \implies x_1 = 0 \text{ or } x_2 = 8.$$

Step 2. First derivative test...

 $f'(-1) = -5 \cdot e^{0.25} \cdot 2.25 < 0$ and $f'(1) = 5 \cdot e^{-0.25} \cdot 1.75 > 0$, so f(0) = 0 is a relative minimum value.[†] $f'(1) = 5 \cdot e^{-0.25} \cdot 1.75 > 0$ and $f'(12) = 60e^{-3}(2-3) < 0$, so $f(8) = 320e^{-2} \approx 43.3073$ is a relative maximum value.[‡]

[†]Actually, f(0) = 0 is the absolute minimum value in the interval $(-\infty, \infty)$... Why?

[‡]Additionally, f(8) is the absolute maximum value in the interval $(0, \infty)$... Why?